Moments of convex distribution functions

نویسندگان

  • David A. Freedman
  • Alexander Gnedin
  • Jim Pitman
چکیده

We solve the moment problem for convex distribution functions on [0, 1] in terms of completely alternating sequences. This complements a recent solution of this problem by Diaconis and Freedman, and relates this work to the Lévy-Khintchine formula for the Laplace transform of a subordinator, and to regenerative composition structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CVaR Reduced Fuzzy Variables and Their Second Order Moments

Based on credibilistic value-at-risk (CVaR) of regularfuzzy variable, we introduce a new CVaR reduction method fortype-2 fuzzy variables. The reduced fuzzy variables arecharacterized by parametric possibility distributions. We establishsome useful analytical expressions for mean values and secondorder moments of common reduced fuzzy variables. The convex properties of second order moments with ...

متن کامل

Preservation of Stochastic Orderings of Interdependent Series and Parallel Systems by Componentwise Switching to Exponentiated Models

This paper discusses the preservation of some stochastic orders between two interdependent series and parallel systems when the survival and distribution functions of all components switch to the exponentiated model. For the series systems, the likelihood ratio, hazard rate, usual, aging faster, aging intensity, convex transform, star, superadditive and dispersive orderings, and for the paralle...

متن کامل

Moments of convex distribution functions and completely alternating sequences

We solve the moment problem for convex distribution functions on [0, 1] in terms of completely alternating sequences. This complements a recent solution of this problem by Diaconis and Freedman, and relates this work to the Lévy-Khintchine formula for the Laplace transform of a subordinator, and to regenerative composition structures.

متن کامل

R Functions to Symbolically Compute the Central Moments of the Multivariate Normal Distribution

The central moments of the multivariate normal distribution are functions of its n×n variance-covariance matrix Σ. These moments can be expressed symbolically as linear combinations of products of powers of the elements of Σ. A formula for these moments derived by differentiating the characteristic function is developed. The formula requires searching integer matrices for matrices whose n succe...

متن کامل

On generating functions of Hausdorff moment sequences (14-CNA-001)

The class of generating functions for completely monotone sequences (moments of finite positive measures on [0, 1]) has an elegant characterization as the class of Pick functions analytic and positive on (−∞, 1). We establish this and another such characterization and develop a variety of consequences. In particular, we characterize generating functions for moments of convex and concave probabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006